19,103 research outputs found

    Tracing the magnetic field morphology of the Lupus I molecular cloud

    Full text link
    Deep R-band CCD linear polarimetry collected for fields with lines-of-sight toward the Lupus I molecular cloud is used to investigate the properties of the magnetic field within this molecular cloud. The observed sample contains about 7000 stars, almost 2000 of them with polarization signal-to-noise ratio larger than 5. These data cover almost the entire main molecular cloud and also sample two diffuse infrared patches in the neighborhood of Lupus I. The large scale pattern of the plane-of-sky projection of the magnetic field is perpendicular to the main axis of Lupus I, but parallel to the two diffuse infrared patches. A detailed analysis of our polarization data combined with the Herschel/SPIRE 350 um dust emission map shows that the principal filament of Lupus I is constituted by three main clumps acted by magnetic fields having different large-scale structure properties. These differences may be the reason for the observed distribution of pre- and protostellar objects along the molecular cloud and its apparent evolutive stage. On the other hand, assuming that the magnetic field is composed by a large-scale and a turbulent components, we find that the latter is rather similar in all three clumps. The estimated plane-of-sky component of the large-scale magnetic field ranges from about 70 uG to 200 uG in these clumps. The intensity increases towards the Galactic plane. The mass-to-magnetic flux ratio is much smaller than unity, implying that Lupus I is magnetically supported on large scales.Comment: 10 pages, 9 figures. Accepted for publication in Ap

    Local Interstellar Medium Kinematics towards the Southern Coalsack and Chamaeleon-Musca dark clouds

    Full text link
    The results of a spectroscopic programme aiming to investigate the kinematics of the local interstellar medium components towards the Southern Coalsack and Chamaeleon-Musca dark clouds are presented. The analysis is based upon high-resolution (R ~ 60,000) spectra of the insterstellar NaI D absorption lines towards 63 B-type stars (d < 500 pc) selected to cover these clouds and the connecting area defined by the Galactic coordinates: 308 > l > 294 and -22 < b < 5. The radial velocities, column densities, velocity dispersions, colour excess and photometric distances to the stars are used to understand the kinematics and distribution of the interstellar cloud components. The analysis indicates that the interstellar gas is distributed in two extended sheet-like structures permeating the whole area, one at d < 60 pc and another around 120-150 pc from the Sun. The dust and gas feature around 120-150 pc seem to be part of an extended large scale feature of similar kinematic properties, supposedly identified with the interaction zone of the Local and Loop I bubbles.Comment: 19 pages, accepted for MNRA

    Dispersal of larval and juvenile seabream: Implications for Mediterranean marine protected areas

    Get PDF
    In the marine context, information about dispersal is essential for the design of networks of marine protected areas (MPAs). Generally, most of the dispersal of demersal fishes is thought to be driven by the transport of eggs and larvae in currents, with the potential contribution of dispersal in later life stages relatively minimal.Using otolith chemistry analyses, we estimate dispersal patterns across a spatial scale of approximately 180. km at both propagule (i.e. eggs and larvae) and juvenile (i.e. between settlement and recruitment) stages of a Mediterranean coastal fishery species, the two-banded seabream Diplodus vulgaris. We detected three major natal sources of propagules replenishing local populations in the entire study area, suggesting that propagule dispersal distance extends to at least 90. km. For the juvenile stage, we detected dispersal of up to 165. km. Our work highlights the surprising and significant role of dispersal during the juvenile life stages as an important mechanism connecting populations. Such new insights are crucial for creating effective management strategies (e.g. MPAs and MPA networks) and to gain support from policymakers and stakeholders, highlighting that MPA benefits can extend well beyond MPA borders, and not only via dispersal of eggs and larvae, but also through movement by juveniles

    Majorana fermions in pinned vortices

    Full text link
    Exploiting the peculiar properties of proximity-induced superconductivity on the surface of a topological insulator, we propose a device which allows the creation of a Majorana fermion inside the core of a pinned Abrikosov vortex. The relevant Bogolyubov-de Gennes equations are studied analytically. We demonstrate that in this system the zero-energy Majorana fermion state is separated by a large energy gap, of the order of the zero-temperature superconducting gap Δ\Delta, from a band of single-particle non-topological excitations. In other words, the Majorana fermion remains robust against thermal fluctuations, as long as the temperature remains substantially lower than the critical superconducting temperature. Experimentally, the Majorana state may be detected by measuring the tunneling differential conductance at the center of the Abrikosov vortex. In such an experiment, the Majorana state manifests itself as a zero-bias anomaly separated by a gap, of the order of Δ\Delta, from the contributions of the nontopological excitations.Comment: 9 pages, 2 eps figures, new references are added, several typos are correcte

    2000 CKM-Triangle Analysis A Critical Review with Updated Experimental Inputs and Theoretical Parameters

    Get PDF
    Within the Standard Model, a review of the current determination of the sides and angles of the CKM unitarity triangle is presented, using experimental constraints from the measurements of |\epsilon_K|, |V_{ub}/V_{cb}|, \Delta m_d and from the limit on \Delta m_s, available in September 2000. Results from the experimental search for {B}^0_s-\bar{B}^0_s oscillations are introduced in the present analysis using the likelihood. Special attention is devoted to the determination of the theoretical uncertainties. The purpose of the analysis is to infer regions where the parameters of interest lie with given probabilities. The BaBar "95 %, C.L. scanning" method is also commented.Comment: 44 pages (revised version

    Magnetic field morphology in nearby molecular clouds as revealed by starlight and submillimetre polarization

    Full text link
    Within four nearby (d < 160 pc) molecular clouds, we statistically evaluate the structure of the interstellar magnetic field, projected on the plane of the sky and integrated along the line of sight, as inferred from the polarized thermal emission of Galactic dust observed by Planck at 353 GHz and from the optical and NIR polarization of background starlight. We compare the dispersion of the field orientation directly in vicinities with an area equivalent to that subtended by the Planck effective beam at 353 GHz (10') and using the second-order structure functions of the field orientation angles. We find that the average dispersion of the starlight-inferred field orientations within 10'-diameter vicinities is less than 20 deg, and that at these scales the mean field orientation is on average within 5 deg of that inferred from the submillimetre polarization observations in the considered regions. We also find that the dispersion of starlight polarization orientations and the polarization fractions within these vicinities are well reproduced by a Gaussian model of the turbulent structure of the magnetic field, in agreement with the findings reported by the Planck collaboration at scales greater than 10' and for comparable column densities. At scales greater than 10', we find differences of up to 14.7 deg between the second-order structure functions obtained from starlight and submillimetre polarization observations in the same positions in the plane of the sky, but comparison with a Gaussian model of the turbulent structure of the magnetic field indicates that these differences are small and are consistent with the difference in angular resolution between both techniques.Comment: 15 pages, 10 figures, submitted to A&

    A globally stable convergent algorithm for the integration of constrained mechanical systems

    Get PDF
    In this paper the problem of simulation of con- strained mechanical systems is addressed. In modeling multi- body mechanical systems, the Lagrange formulation produces a redundant set of differential-algebraic equations, the integra- tion of which can lead to several difficulties, for example the drift of the “constraint violation”. One of the most popular approaches to alleviate this issue is the so-called Baumgarte’s method that relies on a linear feedback mechanism. This method can however lead to numerical instabilities when applied to nonlinear (mechanical) systems. The objective of this study is to propose a new method that ensures existence of solutions and makes the constraint manifold asymptotically attractive. The proposed technique is illustrated by means of a simple example

    A globally stable algorithm for the integration of high-index differential-algebraic systems

    Get PDF
    The problem of constraint stabilization and numerical integration for differential-algebraic systems is addressed using Lyapunov theory. It is observed that the application of stabilization methods which rely on a linear feedback mechanism to nonlinear systems may result in trajectories with finite escape time. To overcome this problem we propose a method based on a nonlinear stabilization mechanism which guarantees the global existence and convergence of the solutions. Discretization schemes, which preserve the properties of the method, are also presented. The results are illustrated by means of the numerical integration of a slider-crank mechanism
    • …
    corecore